RSC6105S、RSC6107S RSC6112S、RSC6120S

•

Features

- Regulation of LED current and voltage with no Flicker
- PSR +/-5% Primary Side ,50% duty cycle, variable frequency control of resonant half-bridge
- Automatic dead time control and capacitive mode protection
- Integrated 2mA high voltage starting circuit
 - Protection modes:
 - Overload
 - No-Load
 - Over-temperature
- Low output capacitance allows live LED connection
- Very low output current ripple <2%
- Power up to 200W and Eff >91%
- Integrated half-bridge drive
- THD optimization ensures low harmonic distortion (THD less than 10 percent @AC 230V)

Introduction

SOP-14

Applications

- Single stage PFC LED
 drivers without flicker
- Applicable power range
 up to 400W

The RSC61XXS Series is a high performance LED constant current resonant mode controller designed specially for high efficiency half-bridge LLC Converter,Maximum 150 KHz HB switching frequency and Up to 600V input voltage range.

The RSC61XX5S Series VCC power supply voltage operating range is 8V~20V and static operating current was 720uA. The chip has the function of current crossing zero detection(ZCD) which can automatically set dead time to prevent high and low output Simultaneous conduction of the MOSFET.

Pin Configuration and Functionality

• Pin configuration with SOP-14

Figure 2 Pin configuration with sop-14

Table 1 Pin names

Pin	Symbol	Function
1	VINS	High Voltage Start up
2		NC
3	VCC	IC power supply
4		NC
5	FB	PSR Feedback input for output voltage regulation.Connect to primary sense winding.
6	CS	PSR Current Sense input provides output current regulation
7	GND	IC ground
8	PGND	Power ground
9	LG	Gate logic for low side switch
10	PVCC	Power supply
11		NC
12	HS	Ground for floating HS driver of HB
13	HG	Gate logic for high side switch
14	HB	Power supply of the HS floating driver of HB

Product Model

NO.	Product Model	Power Range
1	RSC6105S	Applied in LED driver below 50W
2	RSC6107S	Applied in LED driver below 75W
3	RSC6112S	Applied in LED driver below 120W
4	RSC6120S	Applied in LED drive above 150W

Representative Block Diagram

GND Figure 3 Representative Block Diagram

Absolute Maximum ratings

Symbol	Name	Value	Units
VIN	High Voltage Start up	150~600	V
VCC	Signal power supply	-0.3~20	V
FB	Output voltage feedback	-0.3~5	V
CS	Current sensing	-0.3~5	V
LG	Gate logic for low side switch	-0.3~VCC+0.3	V
PVCC	Power supply	-0.3~20	V
HB	Power supply of the HS floating driver of HB	-0.3~600	V
HS	Ground for floating HS driver of HB	HB-20~HB+0.3	V
HG	Gate logic for high side switch	HS-0.3~HB+0.3	V
Tstg	Storage temperature	-55 to 150	°C
Tsolder	Lead temperature	260℃, 10s	
ESD	Human body model, JESD22-A114	2000	V

CAUTION: Permanent damage may result if a device is subjected to operating conditions at or in excess of absolute maximum ratings.

RSC6105S、RSC6107S RSC6112S、RSC6120S

ELECTRICAL CHARACTERISTICS

(Vin=VCC=PVCC=12V,Cin=1uF Temp=25°C,VFB=0, Cload=1nF)

Parameter	Symbol	Conditions	Min.	Туре.	Max.	Units		
High voltage starting current	lin	VIN=100V VCC=14V	1	1.7		mA		
Vcc turn-on threshold	VCC_On		14.25	15	17.25	V		
Vcc turn-off threshold	VCC_off		8	8.7	9.5	V		
	ICC_uv	VCC:0V to 12V		90		uA		
Supply Current	ICC_ON	VCC: 16V to 12V VCS=300mV (AC)		0.8	1.5	mA		
	IDD_error	VCC=0V->16V->12V VCS=0		720		uA		
VFB threshold voltage	V_fb		1.15	1.20	1.25	V		
Over voltage recovery voltage	V_гвн			1.08		V		
Current crossing zero detection	V_zcd	CS_Input sinusoidal signal		154		mV		
Over current protection threshold	V_ocp	CS_Input sinusoidal signal	480	500	520	mV		
LG Rise Time	T_lr	Cload=1nF		60		nS		
LG Fall Time	T_lf	Cload=1nF		35		nS		
HG Rise Time	T_HR	Cload=1nF		30		nS		
HG Fall Time	T_HF	Cload=1nF		35		nS		
	I_LG_source I_HG_source	RSC6105S		350		mA		
LG Peak (Source)Current		RSC6107S		400		mA		
HG Peak (Source)Current		RSC6112S		450		mA		
		RSC6120S		500		mA		
		RSC6105S		800		mA		
LG Peak (Sink)Current	I_LG_sink I_HG_sink	RSC6107S		850		mA		
HG Peak (Sink)Current		RSC6112S		900		mA		
		RSC6120S		1000		mA		
Initial pulse width	T_Start	Cload=1nF		2		uS		
Over temperature protection threshold	ОТР			130		°C		
Over temperature protection reset hysteresis	OTP_HYS	-		15		°C		
Copyright Reasunos http://www.reasunos.com REV:A7 AUG.2021 Page _4_								

RSC6105S、RSC6107S

RSC6112S、RSC6120S

Shows a typical LED driver application using RSC6105S with LLC topology

Figure 4 Typical application circuit

Creating the PCB

There are a few key areas that are important to layout correctly in order to have a good design. Please follow these guidelines:

- 1. Put the filter capacitors and Bootstrap capacitors to the corresponding pins as closely as possible ;
- 2. Keep the track connected to the PIN(LG , HG) and MOSFET (Gate) as short as possible;
- 3. Keep the bootstrap capacitors part running as short as possible for more stable working;

Package Dimensions

Figure 5 Package Dimensions

Disclaimers:

Reasunos Semiconductor Technology CO.,LTD(Reasunos)reserves the right to make changes without notice in order to improve reliability,function or design and to discontinue any product or service without notice .Customers should obtain the latest relevant information before orders and should verify that such information in current and complete.All products are sold subject to Reasunos's terms and conditions supplied at the time of order acknowledgement. Reasunos Semiconductor Technology CO.,LTD warrants performance of its hardware products to the speciffications at the time of sale.Testing,reliability and quality control are used to the extene Reasunos deems necessary to support this warrantee. Except where agreed upon by contr-

actual agreement,testing of all parameters of each product is not necessarily performed. Reasunos Semiconductor Technology CO.,LTD does not assume any liability arising from the use of any product or circuit designs described herein.Customers are responsible for their products and applications using Reasunos's components.To minimize risk,customers must provide

adequate design and operating safeguards.

Reasunos Semiconductor Technology CO.,LTD does not warrant or convey any license either expressed or implied under its patent rights,nor the rights of others.Reproduction of information in Reasunos's data sheeets or data books is permissible only if reproduction is without modification oralteration.Reproduction of this information with any alteration is an unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such altered documentation.

Resale of Reasunos's products with statements different from or beyond the parameters stated by Reasunos Semiconductor Technology CO.,LTD for that product or service voids all express or implied warrantees for the associated Reasunos's product or service and is unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such statements.

Life Support Policy:

Reasunos Semiconductor Technology CO.,LTD's Products are not authorized for use as critical components in life support devices or systems without the expressed written approval of Reasunos Semiconductor Technology CO.,LTD.

As used herein:

1.Life support devices or systems are devices or systems which:

a.are intended for surgical implant into the human body,

b.support or sustain life,

c.whose failuer to when properly used in accordance with instructions for used provided in the laeling,can be reasonably expected to result in significant injury to the user.

system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.