
IF	V _{ce} (sat)	VCES
40A	1.91V	1200V

Applications:

- EV Charging
- Uninterruptible Power Supply (UPS)
- Inverters

Features:

- 1200V trench gate/field termination process
- Very low Vce(sat)
- Low switching loss
- Positive temperature coefficient in Vce(sat)

Ordering Information

Part Number	Package	Marking	Packing	Qty.
RSG40N120HW	T0-247-3	RSG40N120HW	Tube	30 PCS

Absolute Maximun Ratings Tc= 25°C unless otherwise specified

Symbol	Parameter	RSG40N120HW	Units
VCES	Collector-Emitter Voltage	1200	V
VGES	Gate- Emitter Voltage	±20	V
IC	Continuous DC collector current TC = 100 °C	40	Α
ICrm	Repetitive peak collector current tp=1 ms	80	Α
Ptot	Total Power Dissipation @ TC = 25°C	270	W
Tstg	Storage Temperature	- 40to150	°C
ΓL	Maximum Temperature for Soldering	260	°C

Thermal Characteristic

Symbol	Parameter	RSG40N120HW	Units
R _{th} JC	Thermal Resistance, Junction to case for IGBT	0.38	K/W

Electrical Characteristics (Tc=25°C unless otherwise noted)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Co	onditions	
Static Cha	nracteristics							
V(BR)CES	Collector-Emitter Breakdown Voltage	1200	-		V	V _{GE} =0V,I _{CE} =1mA		
ICES	Collector-Emitter Leakage Current	-	-	1	mA	V _{GE} =0V, V _{CE} =1200V		
IGES	Gate to Emitter Leakage current	-	-	200	nA		V _{GE} =+20V, V _{CE} =0V	
VCE(sat)	Collector-Emitter Saturation Voltage	-	1.91	2.3	V	I _C =40A V _{GE} =15	T _j =25° C	
	Gate Threshold Voltage	-	2.36		V	V	T _j =175° C	
VGE(th)	Collector-Emitter Breakdown Voltage	4.5	5.1	5.7	V	I _C =1.5mA,V _{CE} =V _{GE}		
Gfs	Transconductance		27		S	I _C =15A,V _{CE} =20V		
Dynamic (Characteristics							
Cies	Input Capacitance	-	2510			.,		
Coes	Output Capacitance	-	210		PF		=25V, _E =0V,	
Cres	Reverse Transfer Capacitance	-	106		-	f=10	00KHz	
Qg	Total Gate Charge		212		uC	V _{GE} =15V \ I _C =40A V _{CE} =960V		
Switching	Characteristics							
td(ON)	Turn-on Delay Time	-	17					
t _r	Rise Time	-	70		ns	V _{CE} =600	V ,	
td(OFF)	Turn-Off Delay Time	-	150		-	I _C =40A,		
t _f	Fall Time	-	85		-	V _{GE} =+/-1	5V,	
Eon	Turn-On Switching Loss	-	3.45			R_g =12 Ω , Inductive	l oad	
E _{off}	Turn-Off Switching Loss	-	5.72		- mJ	madelive	LUdu	

Diode Maximum Ratings (TJ= 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions
VRRM	Repetitive Peak Reverse Voltage	1200	٧	TC = 25℃
IF	Forward Current	40	Α	TC = 100°C
IFRM	Repetitive Peak Forward Surge Current	80	А	tp=1 ms

Characteristics Values (T_C=25°C unless otherwise noted)

Symbol	Parameter	Min.	Тур.	Мах.	Test Conditions	Unit
VF	Forward Voltage		2.0	2.5	IF =40A,V _{GE} =0V TJ = 25℃	V
••	Torrara Torrago		1.74		IF =40A,V _{GE} =0V TJ = 175℃	
IDM	Peak reverse recovery		13		VR = 600V, IF =40A,V _{GE} =-15V diF/dt=400A/us TJ = 25 °C	
IRM	current		27		VR = 600V, IF =40A,V _{GE} =-15V diF/dt=400A/us TJ = 175°C	A
	Reverse Recovery		2.55		VR = 600V, IF =40A,V _{GE} =-15V diF/dt=400A/us TJ = 25°C	
Qrr	Charge		7.62		VR = 600V, IF =40A,V _{GE} =-15V diF/dt=400A/us TJ = 175°C	uC
			450		VR = 600V, IF =40A,V _{GE} =-15V diF/dt=400A/us TJ = 25°C	
trr	Reverse Recovery time		700		VR = 600V, IF =40A,V _{GE} =-15V diF/dt=400A/us TJ = 175°C	ns
Гио о	Reverse recovered		1.04		VR = 600V, IF =40A,V _{GE} =-15V diF/dt=400A/us TJ = 25°C	
Erec	energy		3.08		VR = 600V, IF =40A,V _{GE} =-15V diF/dt=400A/us TJ = 175°C	mJ
R _{th} JC	Diode Thermal Resistance, Junction		0.45			K/W
Tvj op	Temperature under switching conditions	-40		175		°C

Typical Feature Curve

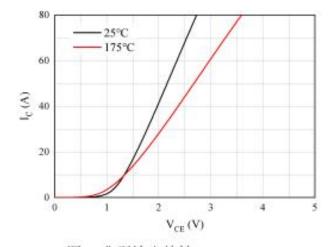


图 1. 典型输出特性 (VGE=15V)

Figure 1. Typical output characteristics (V_{GE}=15V)

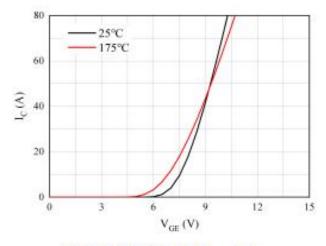


图 3. 典型传输特性(V_{CE}=20V) Figure 3. Typical transfer characteristic(V_{CE}=20V)

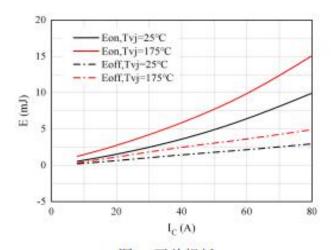


图 5. 开关损耗 Figure 5. Switching losses of IGBT

VGE=±15V, RGon=12Ω, Rgoff=12Ω, VCE=600V

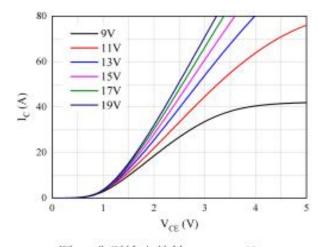
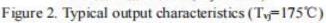



图 2. 典型输出特性 (T_{vj}=175℃)

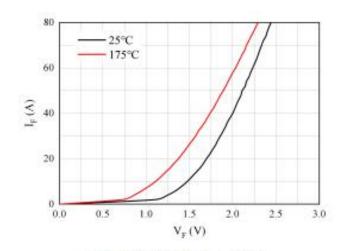


图 4. 正向偏压特性 二极管 Figure 4. Forward characteristic of Diode

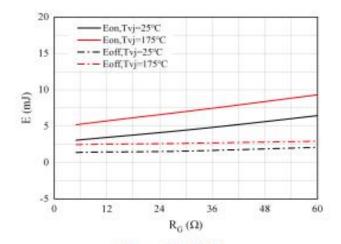


图 6. 开关损耗 Figure 6. Switching losses of IGBT VGE=± 15V, IC=40A, VCE=600V

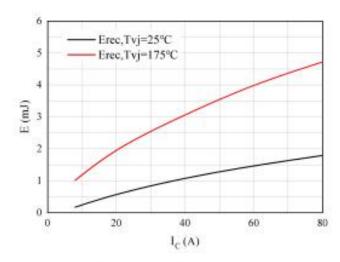


图 7. 开关损耗 二极管 Figure 7. Switching losses of Diode Rgon=12ft, VCE=600V

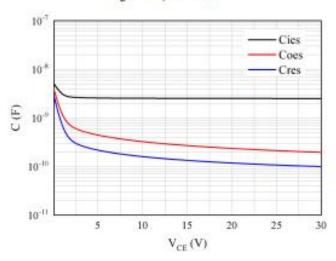


图 9. 电容特性 Figure 9. Capacitance characteristic

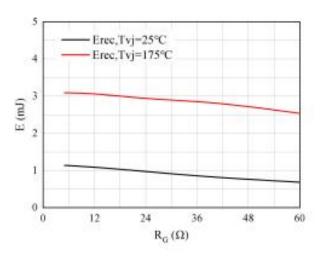
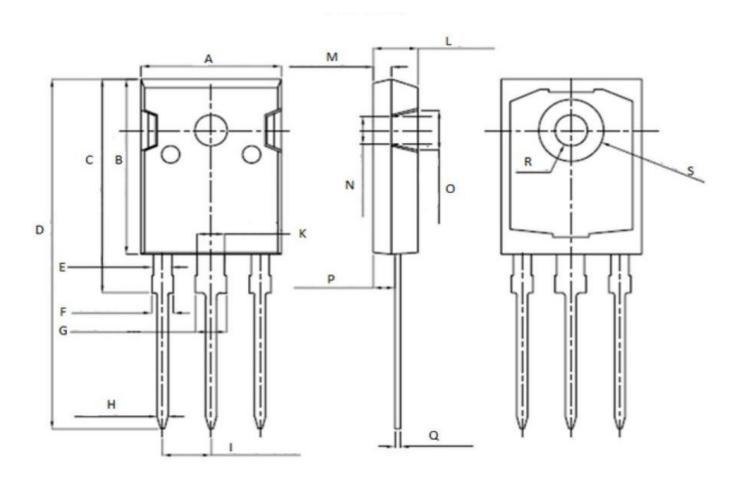



图 8. 开关损耗 二极管 Figure 8. Switching losses of Diode IF=40A, VCE=600V

Package outline drawing(TO-247-3 Unit: mm)

	Unit: mm					
Symbol	Min.	Max.				
Α	15. 95	16. 25				
В	20.85	21. 25				
C	20.95	21. 35				
D	40.5	40.9				
E	1.9	2. 1				
F	2. 1	2. 25				
G	3. 1	3. 25				
Н	1.1	1.3				
I	5. 40	5. 50				

	Unit: mm	
Symbol	Min.	Max.
K	2.90	3. 10
L	4. 90	5. 30
M	1.90	2. 10
N	4.50	4. 70
0	5.40	5. 60
Р	2. 29	2.49
Q	0.51	0. 71
R	ф3.5	ф3.7
S	ф7.1	ф7.3

Disclaimers:

Reasunos Semiconductor Technology CO.,LTD(Reasunos)reserves the right to make changes without notice in order to improve reliability,function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information in current and complete. All products are sold subject to Reasunos's terms and conditions supplied at the time of orderacknowledgement.

Reasunos Semiconductor Technology CO.,LTD warrants performance of its hardware products to the speciffications at the time of sale. Testing, reliability and quality control are used to the extene Reasunos deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed. Reasunos Semiconductor Technology CO.,LTD does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using Reasunos's components. To minimize risk, customers must provide adequate design and operating safeguards.

Reasunos Semiconductor Technology CO.,LTD does not warrant or convey any license eith- er expressed or implied under its patent rights,nor the rights of others.Reproduction of inform- ation in Reasunos's data sheeets or data books is permissible only if reproduction is without modification or oralteration.Reproduction of this information with any alteration is an unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such altered documentation.

Resale of Reasunos's products with statements different from or beyond the parameters stated by Reasunos Semiconductor Technology CO.,LTD for that product or service voids all exp- ress or implied warrantees for the associated Reasunos's product or service and is unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such statements.

Life Support Policy:

Reasunos Semiconductor Technology CO.,LTD's Products are not authorized for use as critical components in life support devices or systems without the expressed written approval of Reasunos Semiconductor Technology CO.,LTD.

As used herein:

- 1. Life support devices or systems are devices or systems which: a.are intended for surgical implant into the human body, b.support or sustain life,
- c.whose failuer to when properly used in accordance with instructions for used provided in the laeling, can be reasonably expected to result in significant injury to the user.
- 2.A critical component is any component of a life support device or system whose failure to system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.