

VDS	RDS(on)	ID@25℃
1200V	18mΩ	105A

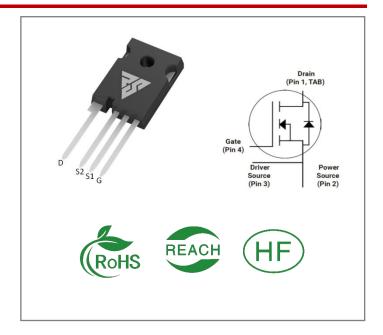
Applications:

- Solar Inverters
- Switch Mode Power Supplies
- High Voltage DC/DC Converters
- EV Charging
- Motor Drives

Features:

- High Blocking Voltage with Low On-Resistance
- High Speed Switching with Low Capacitances
- Easy to Parallel and Simple to Drive
- Avalanche Ruggedness

Benefits:


- Higher System Efficiency
- Reduced Cooling Requirements
- Increased Power Density
- Increased System Switching Frequency

Ordering Information

Part Number	Package	Marking	Packing	Qty.
RSM120018Z	TO-247-4	RSM120018Z	Tube	30 PCS

Maximum Ratings (TJ= 25°C unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
VDSmax	Drain - Source Voltage	1200	V	VGS=0V,ID =100μA	
VGSmax	Gate - Source Voltage	-10/+2 5	V	Absolute maximum values	
VGSop	Gate - Source Voltage	-5/+20	V	Recommended operational values	
ID	Continuous Drain Current	105 74	А	VGS=18V, TC =25°C VGS=18V, TC =100°C	
ID(pulse)	Pulsed Drain Current	220	А	A Pulse width tp limited by TJmax	
PD	Power Dissipation	428	W	TC =25°C	
TL	Solder Temperature	260	$^{\circ}$		
TJ, Tstg	Operating Junction and StorageTemperature	-55 to + 175	$^{\circ}$ C		

Electrical Characteristics (TJ= 25 °C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
V(BR)D	Drain-Source	120			V	VGS=0V,ID =100μA	
SS	Breakdown Voltage	0			, v	V G5-0V,ID -100μA	
) (C C(+L)	Gate Threshold	1.9	2.45	3.8	V	VGS= VDS, IDS=20mA,TC =25°C	
VGS(th)	Voltage		1.6		V	VGS= VDS, IDS=20mA,TC =175°C	
IDSS	Zero Gate Voltage Drain Current	0	1	50	μΑ	VDS= 1200V, VGS=0V	
IGSS+	Gate-Source Leakage Current	0	1	200	nA	VGS=20V, VDS= 0V	
IGSS-	Gate-Source Leakage Current	-20 0	1	0	nA	VGS=-5V, VDS= 0V	
DDC(an)	Drain-Source on-state		18	26	mΩ	VGS=20V, ID =50A, TC =25℃	
RDS(on)	Resistance		34			VGS=20V, ID =50A, TC =175°C	
Ciss	Input Capacitance		480 0			VGS=0V, VDS=1000 V,	
Coss	Output Capacitance		225		pF	f=1MHz,	
Crss	Reverse Transfer Capacitance		10			VAC=25 mV	
EON	Turn-On Switching Energy		400		μЈ		
EOFF	Turn-Off Energy		135		'		
td(on)	Turn-On Delay Time		15			VDS =800V, VGS =-5/20V, ID = 50A,	
tr	Rise Time		22			RG(ext) = 2Ω , L= 200μ H	
td(off)	Turn-Off Delay Time		45		ns		
tf	Fall Time		11				
RG(int)	Internal Gate Resistance		3.6		Ω	f=1 MHz, VAC=25mV	
Qgs	Gate to Source Charge		235		nC	VDS=800V,	
Qgd	Gate to Drain Charge		62		nC	VGS=-5/20V	
Qg	Total Gate Charge		75			ID =50A	

2 / 9 Copyright Reasunos

Reverse Diode Characteristics (TJ= 25℃ unless otherwise specified)

Symbol	Parameter	Тур.	Max	Unit	Test Conditions	Note
VCD	Die de Fermand Vallere	4.3		٧	VGS=-5V, ISD =25 A, TJ = 25℃	
VSD	Diode Forward Voltage			٧	V VGS=-5V, ISD=25 A, TJ= 175°C	
IS	Continuous Diode Forward Current		91	А	VGS=-5V,TC= 25℃	
trr	Reverse Recovery time	30		ns		
Qrr	Reverse Recovery Charge	970		nC	ISD= 50A, VR = 800V	
Irrm	Peak Reverse Recovery Current	53		Α	****	

Thermal Characteristics (TJ= 25℃ unless otherwise specified)

Symbol	Parameter	Тур.	Unit	Test Conditions	Note
RθJC	Thermal Resistance from Junction to Case	0.27	°C /\A/		
RθJA	Thermal Resistance From Junction to Ambient	40	°C/W		

Typical Feature Curve

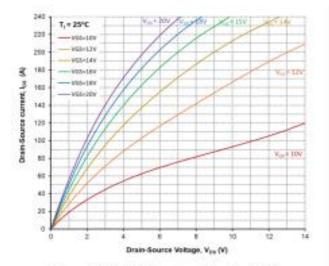


Figure 1. Output Characteristics, T_J = 25°C

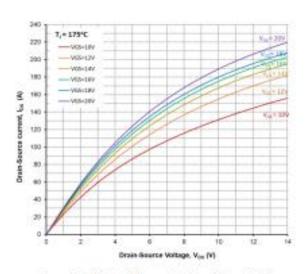


Figure 2. Output Characteristics, T_J = 175°C

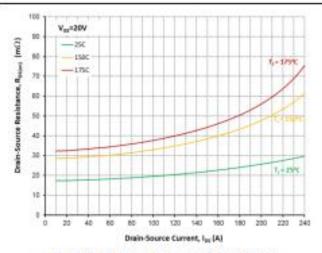


Figure 3. On-Resistance vs. Drain Current For Various Temperatures

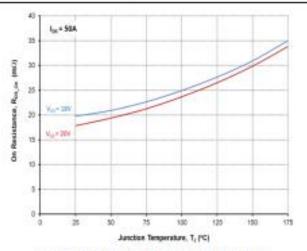


Figure 4. On-Resistance vs. Temperature

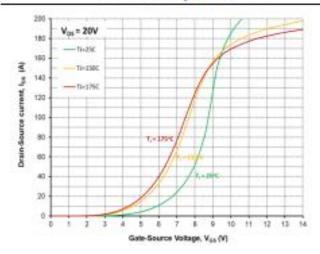


Figure 5. Transfer Characteristic For Various Junction Temperatures

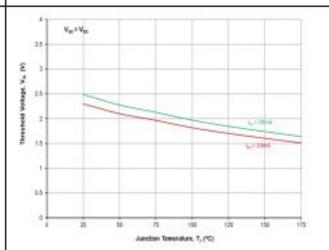


Figure 6. Threshold Voltage vs. Temperature

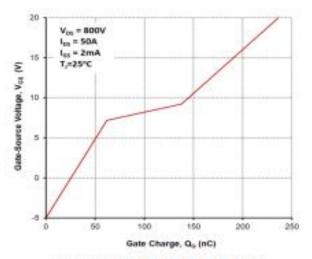


Figure 7. Gate Charge Characteristics

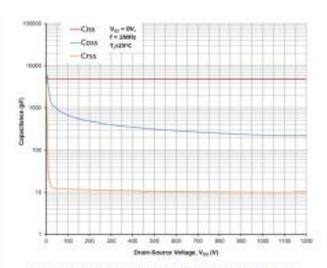


Figure 8. Capacitances vs. Drain-Source Voltage (0-1200V)

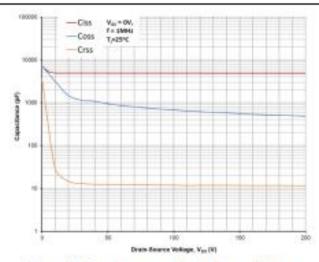


Figure 9. Capacitances vs. Drain-Source Voltage (0-200V)

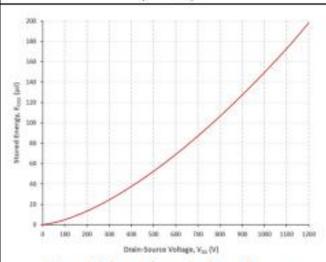


Figure 10. Output Capacitor Stored Energy

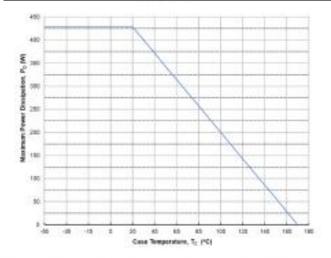


Figure 11. Maximum Power Dissipation Derating vs. Case Temperature

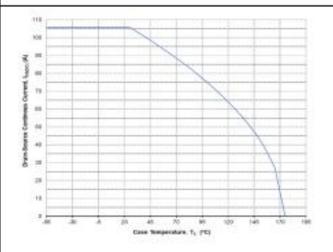


Figure 12. Continuous Drain Current Derating vs. Case Temperature

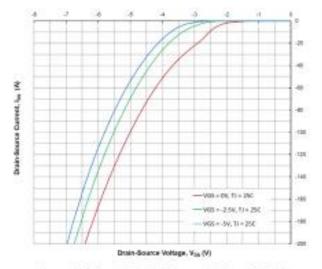


Figure 13. Body Diode Characteristics @ 25°C

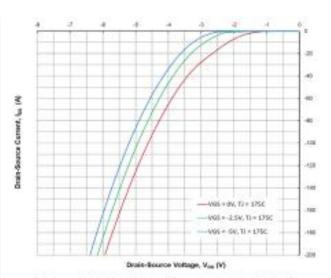


Figure 14. Body Diode Characteristics @ 175°C

Figure 15. 3rd Quadrant Characteristics @ 25°C

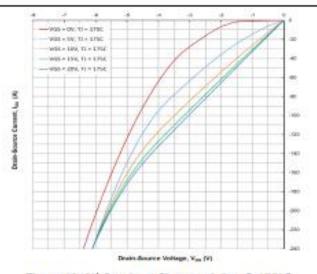


Figure 16. 3rd Quadrant Characteristics @ 175°C

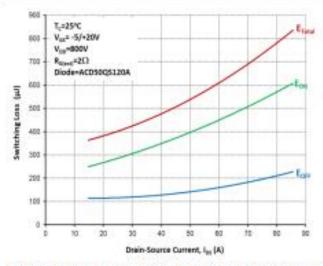
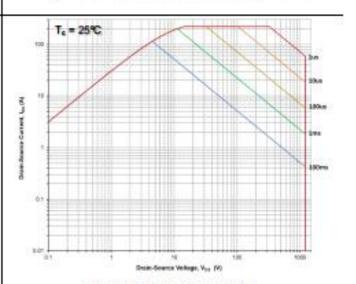
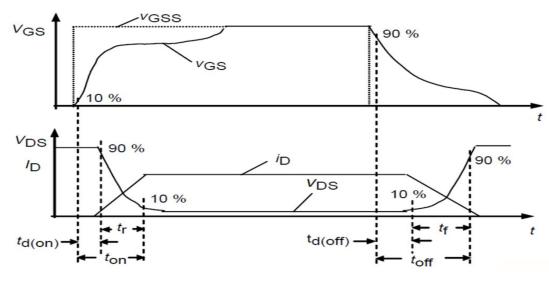


Figure 17. Clamped Inductive Switching Energy vs. Drain Current




Figure 18. Safe Operating Area

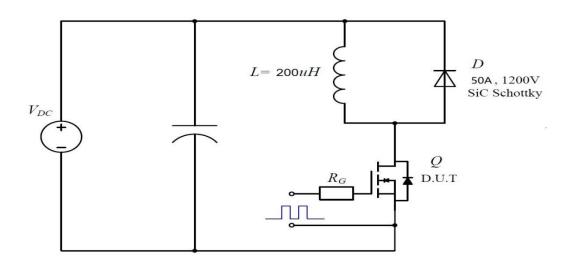
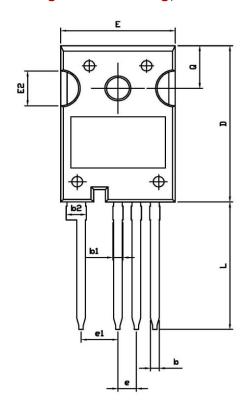
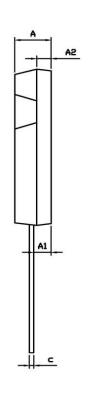
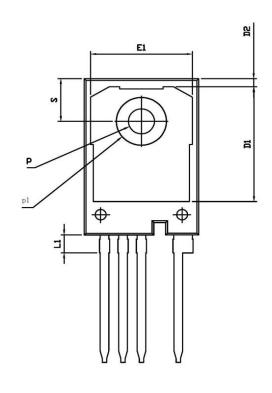
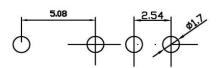


Figure 19. Transient Thermal Impedance (Junction – Case)


Switching Times Definition and Test Circuit






Package outline drawing(TO-247-4 Unit: mm)

RECOMMENDED LAND PATTERN

UNIT: mm

	MIN	NOM	MAX
A	4.80	5.00	5. 20
A1	2. 25	2.40	2.45
A2	1.85	2.00	2. 15
b	1.05	1.20	1. 35
b1	1.00	1.30	1.60
b2	2.35	2.65	2.95
С	0.50	0.60	0.70
D	22. 34	22.54	22.74
D1	16.00	16.50	17.00
D2	0.97	1.17	1. 37
е	2.34	2.54	2.74
e1	4.88	5.08	5. 28
Е	15.60	15.80	16.00
E1	13.50	14.00	14. 50
E2	4.80	5.00	5. 20
L	18.08	18.38	18.68
L1	2.38	2.58	2.78
р	3. 50	3.60	3. 70
p1	6.60	6.80	7.00
Q	6.00	6. 15	6. 30
S	6.00	6. 15	6. 30

Disclaimers:

Reasunos Semiconductor Technology Co.Ltd (Reasunos) reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information in current and complete. All products are sold subject to Reasunos's terms and conditions supplied at the time of orderacknowledgement.

Reasunos Semiconductor Technology Co.Ltd warrants performance of its hardware products to the speciffications at the time of sale. Testing, reliability and quality control are used to the extene Reasunos deems necessary to support this warrantee. Except where agreed upon by contr- actual agreement, testing of all parameters of each product is not necessarily performed.

Reasunos Semiconductor Technology Co.Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using Reasunos's components. To minimize risk, customers must provide adequate design and operating safeguards.

Reasunos Semiconductor Technology Co.Ltd does not warrant or convey any license eith- er expressed or implied under its patent rights, nor the rights of others. Reproduction of inform- ation in Reasunos's data sheets or data books is permissible only if reproduction is without modification oralteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. Reasunos Semiconductor Technology Co.Ltd is not responsi- ble or liable for such altered documentation.

Resale of Reasunos's products with statements different from or beyond the parameters stated by Reasunos Semiconductor Technology Co.Ltd for that product or service voids all exp- ress or implied warrantees for the associated Reasunos's product or service and is unfair and deceptive business practice. Reasunos Semiconductor Technology Co.Ltd is not responsi- ble or liable for such statements.

Life Support Policy:

Reasunos Semiconductor Technology Co.Ltd's Products are not authorized for use as cri- tical components in life support devices or systems without the expressed written approval of Reasunos Semiconductor Technology Co.Ltd.

As used herein:

- 1. Life support devices or systems are devices or systems which: a.are intended for surgical implant into the human body, b.support or sustain life,
- c.whose failuer to when properly used in accordance with instructions for used provided in the laeling, can be reasonably expected to result in significant injury to the user.
- 2.A critical component is any component of a life support device or system whose failure to system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.